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Abstract
The inequality between area and charge A � 4πQ2 for dynamical black holes
is proved. No symmetry assumption is made and charged matter fields are
included. Extensions of this inequality are also proved for regions in the
spacetime which are not necessarily black hole boundaries.

PACS numbers: 04.70.Bw, 04.20.Dw, 04.20.Ex, 02.40.Ky

1. Introduction

In a recent series of articles [13, 1, 14, 26], the quasi-local inequality between area and angular
momentum was proved for dynamical axially symmetric black holes (see also [5, 23, 22, 4] for
a proof in the stationary case). In these articles, the assumption of axial symmetry is essential
since it provides a canonical notion of quasi-local angular momentum. The natural question
is whether similar kinds of inequalities hold without this symmetry assumption that certainly
restricts their application in physically realistic scenarios. A natural first step to answer this
question is to study the related inequality involving the electric charge, since the charge is
always well defined as a quasi-local quantity.

In [17], the expected inequality for area and charge has been proved for stable minimal
surfaces on time symmetric initial data. The main goal of this paper is to extend this result in
several directions. First, we prove the inequality for generic dynamical black holes. Second,
we also prove versions of this inequality for regions which are not necessarily black hole
boundaries, that is, regions that can be interpreted as the boundaries of ordinary objects.

The plan of the paper is as follows. In section 2, we present our mains results which
are given by theorems 2.1, 2.2 and 2.3. We also discuss in this section the physical meaning
of these results. In section 3, we prove theorem 2.1 and in section 4 we prove theorems 2.2
and 2.3.
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2. Main result

Consider Einstein equations with cosmological constant �

Gab = 8π
(
T EM

ab + Tab
) − �gab, (1)

where T EM
ab is the electromagnetic energy–momentum tensor given by

T EM
ab = 1

4π

(
FacFb

c − 1

4
gabFcdFcd

)
, (2)

and Fab is the (antisymmetric) electromagnetic field tensor. The electric and magnetic charge
of an arbitrary closed, oriented, two-surface S embedded in the spacetime are defined by

QE = 1

4π

∫
S

∗Fab, QM = 1

4π

∫
S

Fab, (3)

where ∗Fab = 1
2εabcdFcd is the dual of Fab and εabcd is the volume element of the metric gab.

It is important to emphasize that we do not assume that the matter is uncharged, namely we
allow ∇aFab = −4π jb �= 0 (which is equivalent to ∇aT EM

ab �= 0). The only condition that
we impose is that the non-electromagnetic matter field stress-energy tensor Tab satisfies the
dominant energy condition.

The first main result of this paper is the following theorem.

Theorem 2.1. Given an orientable closed marginally trapped surface S satisfying the
spacetime stably outermost condition, in a spacetime which satisfies Einstein equations (1),
with a non-negative cosmological constant � and such that the non-electromagnetic matter
fields Tab satisfy the dominant energy condition, it holds the inequality

A � 4π
(
Q2

E + Q2
M

)
, (4)

where A, QE and QM are the area, electric and magnetic charges of S given by (3).

For the definition of marginally trapped surfaces and the stably outermost condition, see
definition 3.2 in section 3. This theorem represents a generalization of the result presented
in [17] valid for stable minimal surfaces. In particular, it also incorporates the magnetic
charge in the inequality. The query about the actual existence of magnetic charges is of
experimental nature. From a theoretical perspective, magnetic monopoles can arise in standard
electromagnetic theory as non-trivial topological configurations of the electromagnetic field4

(see e.g. [30, 29]). In our present context, it is natural and straightforward to incorporate the
magnetic charge, since the proof of theorem 2.1 only involves the flux of Fab through a minimal
or marginally trapped surface, with no need of resorting to the singular magnetic monopole
vector potential Aa.

Theorem 2.1 is the analog of the theorem proved in [26] for the angular momentum. The
important difference is that in theorem 2.1, no symmetry assumption is made. Also the proof
of this result is much simpler than the one in [26], and we explain this in detail in section 3.

Although the theorem proved in [17] (which we include as theorem 4.4 in this paper)
for stable minimal surfaces embedded on maximal initial data is more restrictive than
theorem 2.1, it is geometrically interesting and it has also relevant applications as the ones
presented below. One important consequence of theorem 4.4 is that it allows for a suitable
extension of inequality (4) to arbitrary surfaces, as it is proven in the following theorem.

4 More specifically, although no local chart can be found where the corresponding vector potential Aa is non-singular,
the (curvature) electromagnetic field Fab is well defined globally on the non-trivial U (1) principal fiber bundle. The
magnetic charge is determined by the flux of Fab through S, which is controlled by the first Chern class of the
U (1)-bundle (in particular, this is the topological origin of the quantization of the product of electric and magnetic
charges).
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S1 S2

x1 x2

S

Figure 1. Brill–Lindquist data with large separation distance. The dashed surfaces S1 and S2 are
minimal surfaces. The surface S is screening.

Theorem 2.2 (Area, charge and global topology). Let (�, (h, K), (E, B)) be a complete,
maximal and asymptotically flat (with possibly many asymptotic ends) initial data for Einstein–
Maxwell equations. We assume that the non-electromagnetic matter fields are non-charged
and that they satisfy the dominant energy condition. Then, for any oriented surface S screening
an end �e we have

A(S) � 4π
(
Q̄2

E + Q̄2
M

)
� 4π(Q2

E + Q2
M )

|H2| , (5)

where QE and QM are the electric and magnetic charges of S, Q̄E and Q̄M are the absolute
central charges of S and H2 is the second Betti number of �.

For the definitions of screening surface and absolute central charges, see section 4. It is
important to note that all the charges in theorem 2.2 are produced by a non-trivial topology in
the manifold (since by assumption the non-electromagnetic fields are uncharged in the whole
initial surface �). That is, if the topology is trivial (i.e. � = R

3) there is no charges and the
theorem is also trivial. This is an important difference with theorem 2.1, where the charge can
be produced by charged matter inside the trapped surfaces. Note also that this theorem has
global requirements (namely, asymptotic flatness, completeness and the assumption that the
matter is uncharged), in contrast with theorem 2.1 which is purely quasi-local in the sense that
only conditions at the surface are used.

Let us discuss theorem 2.2 in some detail. In order to give an intuitive idea of the result
and of the definitions involved, in the following we will analyze a particular class of examples.

Consider the well-known Brill–Lindquist initial data [10]. Brill–Lindquist data are time
symmetric, conformally flat initial data with N asymptotic ends. To simplify the discussion,
we take N = 3 (in fact the discussion below applies to a much more general class of data
which are not necessarily conformally flat). The manifold is � := R

3\{x1, x2}, where x1 and
x2 are arbitrary points in R

3. Let L = |x1 − x2| , where | · | denotes the Euclidean distance with
respect to the flat conformal metric. The endpoints x1 and x2 have electric charges Q1 and Q2.
The other end has charge Q given by

Q = Q1 + Q2. (6)

Consider families of initial data with fixed charges but different separation distance L. When
L is big enough, it can be proved that there exist only two stable minimal surfaces S1 and
S2 surrounding each end point. See figure 1 (for a numerical picture of these surfaces see
the original article [10]; the analytical proof that there exist only these two surfaces has been

3
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S1 S2

x1 x2

S3

S

Figure 2. Brill–Lindquist data with small separation distance. A third minimal surface S3 appears
enclosing the two ends x1 and x2 and the two minimal surfaces S1 and S2. The surface S is
screening but not necessarily minimal.

given in [12, 15]). Take a sphere S that encloses the two end points x1 and x2. This surface
is screening (for a precise definition, see definition 4.1 in section 4). Since S1 and S2 are the
only minimal surfaces, we have that

A � A1 + A2, (7)

where A is the area of S and A1, A2 are the areas of S1 and S2, respectively. Applying
theorem 4.4 for each minimal surfaces from (7), we obtain

A � 4π
(
Q2

1 + Q2
2

)
. (8)

Take now L to be small enough. Then, a third minimal surface S3, with area A3, which
enclose the two ends appears. This surface is the outermost one and hence we have

A � A3. (9)

See figure 2. Then, using theorem 4.4 we get

A(S ) � 4π(Q1 + Q2)
2 = 4πQ2 (10)

where we have used that the charge of the surface S3 is equal to the charge of the end. If we
combine inequality (10) with (8), we obtain the following:

A(S ) � 4π inf
{
Q2

1 + Q2
2, (Q1 + Q2)

2
}
. (11)

This inequality is valid for all screening surfaces S and it is independent of L. The right-
hand side of this inequality is precisely the square of the absolute central charge defined in
section 4, namely

Q̄(S ) =
√

inf
{
Q2

1 + Q2
2, (Q1 + Q2)2

}
. (12)

Note that if Q1 and Q2 have opposite signs, we get

Q̄(S ) = |Q1 + Q2|, (13)

and if they have the same signs we get

Q̄(S ) =
√

Q2
1 + Q2

2. (14)

The Betti number H2 measures the number of holes of S; in the present case we have H2 = 2.
It is clear that

Q̄(S ) � |Q1 + Q2|
2

= Q(S )

H2
. (15)

4
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This is precisely the second inequality in (5). Note that knowing the size of the parameter L
provides finer information. For example, take Q1 = −Q2. In that case, Q(S ) = Q̄(S ) = 0
and theorem 2.2 is trivial. However, if L is big, we have the non-trivial inequality (8).

Finally we present our third main result. As we discussed above, theorem 2.2 generalizes
theorem 2.1 in the sense that it applies to surfaces that are not necessarily black hole horizons.
However, in that theorem a strong restriction is made, namely that matter fields have no
charges. The natural question is what happens for an ordinary charged object, is it possible to
prove a similar kind of inequality? The answer is no. There exists an interesting and highly
non-trivial counterexample. This counterexample was constructed by Bonnor in [6] and it
can be summarized as follows: for any given positive number k, there exist static, isolated,
non-singular bodies satisfying the energy conditions, whose surface area A satisfies A < kQ2.
In [6], the inequality is written in terms of the mass; however, for this class of solution the
mass is always equal to the charge of the body. The body is a highly prolated spheroid of
electrically counterpoised dust. This suggests that for a body which is ‘round’ enough, a
version of inequality (5) can still hold. From the physical point of view, we state that for an
ordinary charged object we need to control another parameter (the ‘roundness’) in order to
obtain an inequality between area and charge. Remarkably enough it is possible to encode this
intuition in the geometrical concept of the isoperimetric surface: we say that a surface S is
isoperimetric if among all surfaces that enclose the same volume as S does, S has the least
area. Then, using the same technique as in the proof of theorem 4.4 and applying the results
of [11], we obtain the following theorem for isoperimetric surfaces.

Theorem 2.3. Consider an electro-vacuum, maximal initial data, with a non-negative
cosmological constant. Assume that S is a stable isoperimetric sphere. Then,

A(S ) � 4π

3

(
Q2

E + Q2
M

)
, (16)

where QE and QM are the electric and magnetic charges of S.

We emphasize that this theorem is purely quasi-local (as theorem 2.1); it only involves
conditions on the surface S. In particular, it is assumed electro-vacuum only on S, charged
matter could exist inside or outside the surface.

3. Area–charge inequality for black holes

The aim of this section is to prove theorem 2.1. We follow the notation and definitions presented
in [26]. Consider a closed orientable 2-surface S embedded in a spacetime M with metric gab

and Lévi-Cività connection ∇a. We denote the induced metric on S as qab, with the Lévi-Cività
connection Da and the Ricci scalar 2R. We will denote by dS the area measure on S. Let us
consider null vectors �a and ka spanning the normal plane to S and normalized as �aka = −1,
leaving a (boost) rescaling freedom �′a = f �a, k′a = f −1ka. The expansion θ (�) and the shear
σ

(�)

ab associated with the null normal �a are given by

θ (�) = qab∇a�b, σ
(�)

ab = qc
aqd

b∇c�d − 1
2θ (�)qab, (17)

whereas the normal fundamental form 	(�)
a is

	(�)
a = −kcqd

a∇d�c. (18)

The spacetime metric gab can be written in the following form:

gab = qab − �akb − �bka. (19)

5
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The surface S is a marginal outertrapped surface if θ (�) = 0. We will refer to �a as the outgoing
null vector.

The following stability condition on marginally trapped surfaces introduced in [2, 3] plays
a crucial role.

Definition 3.1 (Andersson, Mars, Simon). Given a closed marginally trapped surface S and a
vector va orthogonal to it, we will refer to S as stably outermost with respect to the direction
va iff there exists a function ψ > 0 on S such that the variation of θ (�) with respect to ψva

fulfills the condition

δψvθ
(�) � 0. (20)

Here δ denotes the variation operator associated with a deformation of the surface S
introduced in [2] (see also the treatment in [7]). Following [26] we will formulate this stability
notion in a sense not referring to a particular stability direction, but just requiring stability
along some outgoing non-timelike direction.

Definition 3.2. A closed marginally trapped surface S is referred to as spacetime stably
outermost if there exists an outgoing (−ka-oriented) vector xa = γ̄ �a − ka, with γ̄ � 0, with
respect to which S is stably outermost.

In the following, we denote by Xa the vector Xa = ψxa = γ �a −ψka, with ψ the function
guaranteed by definition 3.1 and γ ≡ ψγ̄ , so that δXθ (�) � 0. Note that this spacetime stability
condition includes, for an outgoing past null vector xa = −ka, the (outer trapping horizon)
stability notions in [21, 28]. For a further discussion concerning this stability condition,
see [26].

The following lemma provides the essential estimate for the matter fields on a stable
marginally trapped surface S. It is the analog of lemma 1 in [26]. Its proof essentially follows
from setting the function α = 1 used in that lemma. It is important to emphasize that no
symmetry assumption is made. For completeness and since the final proof is much simpler,
we present it here.

Lemma 3.3. Given a closed marginally trapped surface S satisfying the spacetime stably
outermost condition, the following inequality holds:∫

S

[
Gab�

a

(
kb + γ

ψ
�b

)]
dS � 4π(1 − g), (21)

where g is the genus of S. If in addition we assume that the left-hand side in inequality (21)
is non-negative and not identically zero, then it follows that g = 0 and hence S has the S

2

topology.

See also theorem 2.1 in [16], where a similar result with similar techniques has been
proved (see especially the paragraph following inequality (2.8) in that paper).

Proof. First, we evaluate δXθ (�)/ψ for the vector Xa = γ �a − ψka provided by definition 1
(use e.g. equations (2.23) and (2.24) in [7]) and impose θ (�) = 0. We obtain
1

ψ
δXθ (�) = Da	(�)

a − 2�lnψ − DalnψDalnψ + 2	(�)
a Dalnψ − 	(�)

c 	(�)c

+1

2
2R − γ

ψ

[
σ

(�)

ab σ (�)ab + Gab�
a�b

] − Gabka�b.

We integrate this equation over the surface S. On the left-hand side, we use the stability
condition (20). The first two terms on the right-hand side integrate to zero. The next three
terms can be arranged as a total square, namely

−(
Dalnψ − 	(�)

a

)
(Dalnψ − 	(�)a

) = −DalnψDalnψ + 2	(�)
a Dalnψ − 	(�)

c 	(�)c
, (22)

6



Class. Quantum Grav. 29 (2012) 035013 S Dain et al

and hence the integral is non-positive. The integral of the scalar curvature is calculated using
the Gauss–Bonnet theorem∫

S

1

2
2R dS = 4π(1 − g). (23)

Finally, the term with σ
(�)

ab σ (�)ab
is non-positive. Collecting all these observations, inequality

(21) follows. If the left-hand side of inequality (21) is non-negative it follows that g can be 0
or 1. If it is not identically zero, then g = 0 and hence S has the S

2 topology. �

The following lemma will allow us to write the relevant normal components of the
electromagnetic field on the surface in terms of the charges. It is important to note that it is
a pure algebraic result, Maxwell equations are not used. In particular, the generalization to
Yang–Mills theories with a compact Lie group is direct and will be presented elsewhere.

Lemma 3.4. Let T EM
ab be the electromagnetic energy–momentum tensor given by (2). Then,

the following equality holds:

T EM
ab �akb = 1

8π

[(
�akbFab

)2 + (
�akb∗Fab

)2]
. (24)

Proof. The proof is a straightforward computation using the form of metric (19). We mention
some useful intermediate steps. Using equation (19), we calculate

FabFab = −2(�akbFab)
2 − 4qabkcFac�

dFbd + FabFcdqacqbd (25)

and

�akcFabFc
b = (�akbFab)

2 + qabkcFac�
dFbd . (26)

Noting that the pull-back of Fab on the surface S is proportional to the volume element εab of
the surface S, we can evaluate FabFcdqacqbd and (εabFab)

2 to obtain

FabFcdqacqbd = 1
2 (εabFab)

2 = 2(∗Fab�
akb)2, (27)

where the identity
∗Fab�

akb = 1
2 Fabε

ab (28)

has been used in the second equality. This identity follows from the relation εab = εabcd�
ckd .

Inserting first (27) in equation (25) and then the resulting expression (together with (26)) into
(2), we obtain (24). �

Note that the electric and magnetic charges (3) of S can be written as follows in terms of
the null vector �a and ka:

QE = 1

4π

∫
S

Fab�
akbdS, QM = 1

4π

∫
S

∗Fab�
akbdS. (29)

Having proved these two lemmas, we have already the basic ingredients for the proof of
our first main result.

Proof of theorem 2.1. We use inequality (21) and Einstein equations (1). Since the vector
ka +γ /ψ�a is timelike or null, using that the tensor Tab satisfies the dominant energy condition
and that � is non-negative, we get from (21) that

8π

∫
S

T EM
ab �akb dS � 8π

∫
S

[
T EM

ab �a

(
kb + γ

ψ
�b

)]
dS � 4π(1 − g), (30)

7



Class. Quantum Grav. 29 (2012) 035013 S Dain et al

where in the last inequality we have used that T EM
ab �a�b � 0 (this inequality follows directly

from (2), i.e. the electromagnetic energy–momentum tensor satisfies the null energy condition).
We use equality (24) to obtain from inequality (30) the following bound:∫

S
[(�akbFab)

2 + (�akb∗Fab)
2] dS � 4π(1 − g). (31)

If the left-hand side of inequality (31) is identically zero, then the charges are zero and
inequality (4) is trivial. Then, we can assume that it is not zero at some point and hence we
have that g = 0.

To bound the left-hand side of inequality (31), we use the Hölder inequality onS (following
the spirit of the proof presented in [25] for the charged Penrose inequality) in the following
form. For integrable functions f and h, the Hölder inequality is given by∫

S
f h dS �

(∫
S

f 2 dS

)1/2 (∫
S

h2 dS

)1/2

. (32)

If we take h = 1, then we obtain∫
S

f dS �
(∫

S
f 2 dS

)1/2

A1/2, (33)

where A is the area of S. Using this inequality in (31), we finally obtain

A−1

[(∫
S

�akbFab dS

)2

+
(∫

S
�akb∗Fab dS

)2
]

� 4π. (34)

Finally, we use equation (29) to express the left-hand side of (34) in terms of QE and QM .
Hence, inequality (4) follows. �

We note that up to the use of the Hölder inequality in equation (32), the line of reasoning
in the proof above is also followed in [8]. Starting from the outer condition for trapping
horizons in [21] (see also [28]), namely the stably outermost condition for a null Xa, a version
of lemma 3.3 is derived there (their equation (20)). Then, the equality in lemma 3.4 is their
equation (22). The last step completing the proof is though missing.

4. Area, charge and global topology

We consider maximal Einstein–Maxwell initial states (�, (h, K), (E, B)), with possibly many
asymptotically flat (AF) ends. AF ends will be denoted by �e. Our central object, the subject
of our study, will be surfaces, S, ‘screening’ a given end �e. Their definition is as follows.

Definition 4.1 (Screening surfaces). Fix an AF end �e of �. A compact, oriented, but not
necessarily connected surface S is said to screen the end �e if it is the boundary of an open
and connected region 	 containing the given end but not any other. Such 	 is called a screened
region.

Every component of the surface S will always be given the orientation arising from the
outgoing normal to 	.

Given an embedded oriented and compact surface S, and a divergenceless vector field Xa

we define the charge Q(S ) (relative to Xa) as

Q(S ) = 1

4π

∫
S

Xana dS, (35)

where na is the normal field to S in �, that together with the orientation of � returns the
orientation of S. Note that because Xa is divergenceless, the charge Q(S ) depends only on

8
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the homology class of S, denoted by [S]. When Xa = Ea or X = B, that is, when Xa is either
the electric or the magnetic field, then the associated charges are the electric or the magnetic
charges. To avoid excessive writing and to display certain generality, we will work most of the
time with an arbitrary vector field Xa, instead of the specific vectors Ea and Ba.

Note by the Gauss theorem that if S is screening then the electric or the magnetic charges
of S are equal to the electric or the magnetic charges of the given end �e.

In the following, we will discuss the notion of absolute central charges associated with
an end which will play an important role in the proof of theorem 2.2. The relevant properties
of charges and central charges are summarized in proposition 4.3. Then, we will explain in
proposition 4.4 the basic inequality between area and charge for stable minimal surfaces.
Using these elements we sketch then the idea of the proof of theorem 2.2. The rigorous proof
is given immediately thereafter.

Definition 4.2 (Absolute central charges). Fix an AF end �e. Let S = S1 ∪· · ·∪Sk(	) = ∂	 be
a screening surface of the end �e. Among the Si’s there are those that are part of the boundary
of the unbounded connected components of � \ 	. Let us assume that {S1, . . . ,Sk(	)} were
ordered in such a way that {S1, . . . ,Sn(	)}, n(	) � k(	), are such components. Then, define
the absolute central electric or magnetic charges Q̄E and Q̄M associated with an end �e as

Q̄ = inf
	

√√√√i=n(	)∑
i=1

Q2(Si), (36)

where for Q̄E , Q is the electric charge and for Q̄M, Q is the magnetic charge and where 	

ranges among the screened regions of �e.

We note now some basic facts about charges and absolute central charges.

Proposition 4.3. Let 	 be a screened region of an end �e, and let S = ∂	 be the screening
surface. Then,

(1) |Q(�e)| = |∑i=n(	)

i=1 Q(Si)| � n(	)
1
2 (

∑i=n(	)

i=1 Q2(Si))
1
2 , where Q is here either an

electric or a magnetic charge.
(2) n(	) � |H2|, where |H2| is the second Betti number5.
(3) Q2(�e)/|H2| � Q̄2(S ).

Proof.
Item 1. Let � \ 	 = ∪i= j(	)

i=1 	c
i , where the 	c

i are connected. Then, we have

Q(�e) =
i= j(	)∑

i=1

Q
(
∂	c

i

)
, (37)

where Q is either the electric or the magnetic charge. But we note that if 	c
i is a bounded

component, then by the Gauss theorem Q(∂	c
i ) = 0. Using this and recalling then that the

surfaces S1, . . . ,Sn(	) are those that belong to the boundary of an unbounded connected
component, 	c

i , of � \ 	, we obtain

Q̄(�e) =
i= j(	)∑

i=1

Q
(
∂	c

i

) =
i=n(	)∑

i=1

Q(Si), (38)

and the claim of item 1 follows.
5 Recall that the second homology group H2(�, Z) of a manifold � (with finitely many AF ends) is always of the
form H2 ∼ Z

|H2| ⊕ T , where T is a finite Abelian group called the Torsion and where |H2| is the second Betti number.

9
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Item 2. We show now that the surfaces S1, . . . ,Sn(	), which are orientable and oriented (from
the outgoing normal to 	), are indeed linearly independent of H2(�, Z). Namely we show
that if for some integer coefficients ai ∈ Z, i = 1, . . . , n(	), we have

i=n(	)∑
i=1

ai[Si] = 0 (39)

in H2, then ai = 0 for i = 1, . . . , n(	). Thus, Z
n(	) ⊂ H2 and therefore n(	) � |H2|.

A simple and visual way to show this using triangulations of � is as follows.
Suppose that a certain integer combination of [Si] is zero in homology, namely suppose

that
∑i=n

i=1 ai[Si] = ∂[C̄3] for some integer coefficients ai and a singular chain [C̄3] = ∑
bi[σi],

where σi : �3 → � is a singular three-simplex ([20], p 108). We consider now a closed
region �̄, with smooth boundary and containing in its interior the surfaces Si and the singular
simplices σi(�

3). It is clear that
∑i=n

i=1 ai[Si] = 0 in H2(�̄, Z).
Consider a triangulation of � by embedded three-simplices (i.e. tetrahedrons) in such a

way that every embedded two-simplex (i.e. triangle) of their boundaries is either disjoint from
all the Si’s and ∂�̄ or is inside and embedded in one of the Si’s or in ∂�̄ (such triangulation
always exists). In this way, we will assume �̄ as a �-complex ([20], p 104).

We recall that the homology groups of �̄ as a �-complex, denoted by H�
i (�, Z), i =

0, 1, 2, 3, and the homology groups of �̄, denoted by Hi(�̄, Z), i = 0, 1, 2, 3, are naturally
isomorphic ([20], theorem 2.27).

For this reason, it is enough to argue in terms of chains of the �-complex (triangulation)
only. We will do that in the following.

Note that for the particular triangulation that we have chosen we can assume [Si] as a
two-chain of the �-complex, namely a sum with coefficients in Z of oriented three-simplices
of the �-complex. The same happens with ∂�̄. Suppose then that

∑i=n(	)

i=1 ai[Si] = 0 in H�
2 ,

that is, suppose that

i=n∑
i=1

ai[Si] = ∂[C3],

where ai ∈ Z, and [C3] is a three-chain of the �-complex, namely a sum with coefficients in
Z of oriented three-simplices of the �-complex. We want to see that all the a′

is must be zero.
For this we will make use of smooth embedded, inextensible, oriented curves, denoted by ξ ,
such that

(1) ξ ends along one direction at �e and ends along the other direction at another end �′
e

(�′
e �= �e),

(2) if ξ intersects a two-simplex of the �-complex it does so in its interior and transversally
to it. Thus, if ξ intersects Si, then it does so transversally.

Thus, because ξ and Si are oriented, their intersection number ([19], chapter 3, section 3)
denoted by (ξ ∩ Si) is well defined6. Moreover, we have

i=n∑
i=1

ai(ξ ∩ [Si]) = (ξ ∩ ∂[C3]). (40)

We note now that the boundary of any three-simplex of the �-complex has signed the
intersection number equal to zero to any such curve (ξ gets out of the three-simplex the

6 The authors of [19] use this notation for the intersection number mod 2.
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same number of times it gets in). Therefore, the intersection number of any curve ξ with ∂[C3]
must be zero. Therefore, from (40) we get

i=n∑
i=1

ai(ξ ∩ [Si]) = 0 (41)

for any such curve ξ . Assume now that aj �= 0. Recalling the definition of the S ′
i s we can

consider an inextendible curve ξ as before, such that (ξ ∩ Sj) = 1 and (ξ ∩ Si) = 0 for i �= j.
Indeed the curve ξ can be chosen to intersect Sj only once and avoiding intersecting Si, i �= j.
Then, the intersection number of ξ to

∑
ai[Si] must be equal to

i=n(	)∑
i=1

ai(ξ ∩ [Si]) = a j �= 0, (42)

which is a contradiction. This finishes the proof of the second item.

Item 3. This item follows directly from items 1 and 2. �

We discuss now the basic relation between charge and area for stable minimal surfaces. We
recall first the setup. Let (�, h) be an oriented Riemannian three-manifold, with possibly many
asymptotically flat ends. Suppose that its scalar curvature R satisfies R � 2|X |2, where the
vector field Xa is divergenceless. Then, for any oriented surface S, the charge Q([S]) is given
by (35). Then, in this setup, we have the following result proved in [17]. For completeness,
we repeat its proof.

Theorem 4.4 (Gibbons). Let S be a stable minimal surface. Then,

A � 4πQ2, (43)

where A is the area of S and Q is its charge.

Proof. The stability inequality (where D is the covariant derivative with respect to the
Riemannian metric h)∫

S
|Dα|2 + 1

2
2Rα2 dS � 1

2

∫
S

R dS (44)

with α = 1 gives

4π � 1

2

∫
S

R dS �
∫

S
|X |2 dS �

(
∫

S Xana dS)2

A
= (4πQ)2

A
, (45)

where the last inequality follows from the Cauchy–Schwarz inequality. �

Note that part of the argument above shows that

A � 4π

|X |2
, (46)

where |X |2 is the average of |X |2 over S. Combining this and (43) in the case of the
electromagnetic field (Einstein–Maxwell), we get

|E|2 + |B|2 � 1

Q2
E + Q2

M

. (47)

In other words, the average of the electromagnetic energy over S is bounded above by the
sum of the squares of the electric and magnetic charges. In a mean sense, the electromagnetic
energy cannot be arbitrarily large over S if S is minimal and stable.

11
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We are ready to discuss and give the proof of theorem 2.2. As said before and to simplify
the writing, we will work with a system of the form

R � 2|X |2,
DaXa = 0,

instead of the system

R � 2(|E|2 + |B|2), (48)

DaEa = 0, (49)

DaBa = 0 (50)

but the argumentation is exactly parallel in this last case.
In this setup, the proof of theorem 2.2 follows from propositions (4.3) and (4.4) and an

application of a result of Meeks–Simon–Yau [27]. Indeed, we start by choosing an end �e

and a screening surface S. We apply then theorem 1 in [27] to obtain a smooth measure-
theoretical limit of isotopic variations of S, whose area realizes the infimum of the areas of
all the isotopic variations of S. The important fact is that because S is screening and the limit
surfaces (possibly repeated) are a measure-theoretical limit of isotopic variations of S, then
there is a subset of connected limit surfaces whose union is a screening surface. The inequality
(5) follows then applying (43) to any one of these stable components of the limit and using
Item 3 in proposition 4.3.

Proof of theorem 2.2. Let S be an oriented surface embedded in � and screening the end �e.
Following [27], theorem 1, there exist embedded minimal surfaces, S1, . . . , Sk, and natural
numbers n1, . . . , nk (ni � 0) such that

(1) A(S ) � infS̃∼S A(S̃ ) = n1A(S1)+· · ·+nkA(Sk), where S̃ ∼ S signifies that the infimum
is taken over surfaces S̃ isotopic to S, and

(2) there is a sequence of surfaces {S̃} isotopic to S such that for any continuous function h
we have

lim
∫
S̃

h dS =
i=k∑
i=1

ni

∫
Si

h dS (51)

which implies, choosing h = 1, that lim A(S̃ ) = n1A(S1) + · · · + nkA(Sk).

We claim that because S screens the end �e, there is a subset of surfaces S1, . . . ,Sk screening
�e. Namely, we claim that there is a screened region 	̄, such that ∂	̄ is a union of some or all
of the surfaces S1, . . . ,Sk. Let us postpone this technical point to the end and assume for the
moment that the surfaces Si’s were ordered in such a way that S1, . . .Sl , l � k, is such a set
of oriented surfaces, or in other words that ∂	̄ = S1 ∪ · · · ∪ Sl .

We therefore calculate

A(S) �
i=k∑
i=1

niA(Si) � 4π

i=l∑
i=1

n jQ
2(Si) (52)

� 4π

i=l∑
i=1

Q2(Si) � 4πQ2 � 4πQ2

|H2| . (53)

The claim of theorem 2.2 follows.
We prove now that there is a subset of the S1, . . . ,Sk screening �e. For this we will show

that every embedded inextensible curve ξ starting at �e and ending at �e �= �e has to intersect

12
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one of the S1, . . . ,Sk. If that is the case, define 	 as the set of points p in � \ (S1 ∪ · · · ∪ Sk),
such that there is an inextensible embedded curve β starting at �e and ending at p and not
touching any of the surfaces S1, . . . ,Sk. Such an open set would not contain any end different
from �e and its boundary would be a subset of S1, . . . ,Sk. Then, the closure 	̄ of 	 must be
a screened region and its boundary ∂	̄ must be a subset of the S1, . . . ,S j. Note that ∂	̄ is not
necessarily equal to ∂	.

Suppose now that there is an inextensible embedded curve ξ starting at �e and ending at
�′

e �= �e.
Let now T (r), for r small, be a tubular neighborhood of ξ of radius r such that

T (r) ∩ (S1 ∪ · · · ∪ Sk) = ∅. Let ϕ be a non-negative function such that ϕ = 1 on T (r/2) and
0 on T (r/2)c (T c(r/2) is the complement of T (r/2) in �) and let f be a function of support
in T (r)c. Then, we have

lim
∫

S̃
f + ϕ dS =

i=k∑
i=1

∫
Si

f + ϕ dS =
i=k∑
i=1

∫
Si

f dS. (54)

On the other hand, we have

lim
∫

S̃
f dS =

i=k∑
i=1

∫
Si

f dS (55)

and

lim
∫

S̃
ϕ dS � c > 0 (56)

for some fixed constant c > 0 and for every element of the sequence S̃. This last inequality
follows easily from the fact that every element S̃ must intersect every curve at a distance
d < r/2 from ξ (otherwise the intersection number between ξ and S̃ would be zero, which
would imply that the intersection number between ξ and S would be zero). Inequalities (55)
and (56) contradict (54). �

Finally we give the proof of theorem 2.3.

Proof of theorem 2.3. In [11], it has been shown that an isoperimetric stable sphere S satisfies
the following inequality7:

12π � 1

2

∫
S

R dS. (57)

Note the extra factor 3 in comparison with (44). The left-hand side of (57) is bounded in the
same way as in the proof of theorem 4.4. �

We would like to point out that inequalities of type (5) are precursors of further inequalities
between mass and charge squared. Indeed, using the Riemannian–Penrose inequality [9] and
theorem 4.4, one can easily prove for instance the following.

Theorem 4.5 (Mass, charge and global topology). Let (�, (g, K), (E, B)) be a maximal initial
state for the Einstein–Maxwell equations, with asymptotically flat ends. Then, for a given end
�e we have

4m2 � Q2
E + Q2

M

|H2| , (58)

where m is the mass of �e and QE and QB are its electric and magnetic charges.

For a different treatment of these types of inequalities, see for instance [24, 18].

7 There is a missing 1/2 factor in front of R in equation (2) of [11]. This factor translates into equation (5) in that
reference.
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